Identification of heat and hydraulic characteristics of channels of complex profile

Main Article Content

T.D. Panchenko
V.I. Starodub
I.A. Tuzova
V.V. Chelabchi
V.N. Chelabchi

Abstract

The article discusses the methods for identifying the heat-hydraulic characteristics of the slotted channels of a complex profile in the case of laminar and transient modes of air flow. The identification of aerodynamic characteristics is carried out on the basis of a full-scale experiment. The working medium in the experiment is water. In the transition to dependencies for air, similarity theory is used. The study of heat transfer in the channel is carried out numerically. An effective method of approximation of the equations of mathematical transport models is proposed and a new algorithm for jointly solving transport equations is used. The solution of tasks on modeling air velocity and pressure is carried out iteratively. The obtained air velocity field allows us to determine the temperature field by a numerical method. According to the simulation results, criterion dependences are established for describing heat transfer.

Article Details

How to Cite
Panchenko, T., Starodub , V., Tuzova, I., Chelabchi, V., & Chelabchi, V. (2020). Identification of heat and hydraulic characteristics of channels of complex profile. Herald of the Odessa National Maritime University, (59(2), 135-154. https://doi.org/10.33082/2226-1915-2-2019-135-154
Section
Technical problems of ship equipment operation
Author Biographies

T.D. Panchenko, Odessa national maritime university

senior lecturer of the department of  «Technical Cybernetics named of the Professor R.V. Merct»

V.I. Starodub , Odessa national maritime university

senior lecturer of the department of  «Technical Cybernetics named of the Professor R.V. Merct»

I.A. Tuzova, Odessa national maritime university

Associate Professor of the department of  «Technical Cybernetics named of the Professor R.V. Merct»

V.V. Chelabchi, Odessa national maritime university

senior lecturer of the department of  «Technical Cybernetics named of the Professor R.V. Merct»

V.N. Chelabchi, Odessa national maritime university

Ph. D. Professor of the department of  «Technical Cybernetics named of the Professor R.V. Merct»

References

1. Doroshenko A.V., Kyryllov V.Kh., Efymova O.V., Klymchuk A.A. (2000) Novoe pokolenye system kondytsyonyrovanyya vozdukha na osnove kombynyrovannыkh ysparytel'nыkh okhladyteley [The new generation of air conditioning systems based on combined evaporative coolers]. Refrigeration and Technology, no. 67, pp. 57-68.
2. Меrкt R.V., Chelabchi V.N. (1993) Ecologically clean cool-production on ships. Proceedings of the 6-th Congress of the IMAM, vol. 3, pp. 173-179.
3. Chepurnyi M.M., Tkachenko S.Y. (2006) Rozrakhunky teplomasoobminnykh aparativ. Navch. Posibnyk [Calculations of heat exchangers. Educ. manual]. Vinnytsia: VNTU. (in Ukrainian)
4. Martynenko O.H. (1987) Spravochnik po teploobmennikam [Heat Exchanger Reference]. Moskow: Energoatomizdat. vol. 2. (in Russian).
5. Kulinichenko V.R. (2009) Spravochnik po teploobmennym raschetam [Heat Exchange Calculator Reference]. Kiev: Technique. (in Russian).
6. Potapkin V.O., Kungurcev S.V., Bukashev A.N. (2006) Metodika podbora i rascheta plastinchatyh teploobmennikov dlya teplovyh punktov sistem teplosnabzheniya [Methods of selection and calculation of plate heat exchangers for heat points of heat supply systems]. Novosibirsk: JSC «Novosibirskgorteploenergo» (in Russian).
7. Mohov A.I., Rafalskaya T.A. (2015) Расчет и сравнение характеристик пластинчатых теплообменников [Calculation and comparison of characteristics of plate heat exchangers]. Young scientist, no. 7, pp. 176-180.
8. Arakelyan S.M. (2015) Metody vychislitelnoj gidrodinamiki v raschetah dvizheniya zhidkosti v sistemah so slozhnoj topolo-giej: Uchebn. posobie [Methods of computational fluid dynamics in the calculation of fluid motion in systems with complex topology: Educ. manual]. Vladimir: VlSU Publishing House
9. Gorshenin A.S. (2009) Metody intensifikacii teploobmena:Uchebn. posobie. [Methods of intensification of heat transfer: Educ. manual]. Samara: Samar.gos.tekhn.un-t (in Russian).
10. Svetlov Yu.V. (2003) Intensifikaciya gidrodinamicheskih i teplovyh processov v apparatah s turbulizatorami potoka. Teoriya, eksperiment, metody rascheta [Intensification of hydrodynamic and thermal processes in devices with flow turbulators. Theory, experiment, calculation methods]. Moskow: Energoatomizdat (in Russian).
11. Veselovskij V.B., Dreus A.Yu., Syasyev A.V. (2004) Matematychne modeliuvannia ta metody rozrakhunku teplotekhnolohichnykh protsesiv: Navch. posibnyk [Mathematical Modeling and Methods of Calculation of Thermal Technology Processes: Educ. manual] (in Russian).
12. Karyakin V.E., Karyakin Yu.E. (1986) Raschet techenij vyazkoj zhidkosti v ploskih kanalah proizvolnoj formy [Calculation of viscous fluid flows in planar channels of arbitrary shape]. Nume-rical methods for continuous medium mechanics, vol. 17, no. 5, pp. 91-100.
13. Stoitchkov N.J., Dimirov G.J. (1998) Effectiveness of crossflow plate heat exchanger for indirect evaporative cooling. Int. J. Refrig, vol. 21, no. 6, pp. 463- 471.
14. Merkt R.V., Chelabchi V.V., Chelabchi V.N. (2003) Optimizaciya vozduhoohladitelej isparitelnogo tipa [Evaporative Air Cooler Optimization]. Industrial heat engineering, vol. 25, no. 4, pp. 167-169.
15. Panchenko T.D., Chelabchi V.V., Chelabchi V.N. (2016) Modeliuvannia rozghaluzhenykh sudnovykh system [Modeling of branched ship systems]. Visnyk Odeskoho natsionalnoho morskoho universytetu: Zb. nauk. prats, vol. 49, no. 3, pp. 104-115.
16. Merkt R.V., Chelabchy V.V. (2004) Computer simulation of associated transfer processes. System analysis, management and infor-mation technology, no. 2, pp. 37-47.
17. Merkt R.V., Chelabchy V.V., Chelabchy V.N. (2010) Osobennosti modelirovanie perehodnyh rezhimov techeniya v kanalah [Features modeling of transitional flow regimes in channels]. Sat scientific Proceedings of the International Scientific and Practical Conference «Modern Directions of Theoretical and Applied Research‘ 2010», vol. 34, pp. 16-20.
18. Patankar S.V. (1984) Численные методы решения задач теплообмена и динамики жидкости [Numerical methods for solving heat transfer and fluid dynamics problems]. Moskow: Energo-atomizdat (in Russian).
19. Chelabchi V.V. (2017) Mathematical modeling of air coolers of indirect evaporative type . East European Journal of Advanced Technology, vol. 85, no. 1, pp. 34-42.
20. Chelabchy V.V., Chelabchy V.N. (2013) Smoothing out of experimental dependences. Sat scientific Proceedings of Sworld, vol. 5, no. 4, pp. 47-51.