Assessment of the possibility of using hydrotreated vegetable oil as fuel in marine diesel engines

Main Article Content

S. Sagin
О. Kuropyatnyk

Abstract

The possibility of using hydrogenated vegetable oil as fuel in marine diesel engines has been considered. It has been determined that the coincidence of viscosity, density and flash point of marine motor fuels of petroleum origin and hydrogenated vegetable oil allows its use in marine diesel engines without additional conversion of the fuel system. The assessment of the possibility of using hydrogenated vegetable oil as fuel in marine diesel engines was carried out on three identical ship medium-speed diesel engines 5ML225 of the CSSC Marine Power Co., Ltd. During the experiments, each diesel engine was operated on a separate type of fuel – petroleum RME180 and DMA10, as well as on hydrogenated vegetable oil. The ship's energy consumption was organized in such a way that all three diesel engines were in operation. At the same time, the total load changed at different time intervals, but was equally distributed between the diesel engines. This, as well as the same cooling and lubrication modes of diesel engines, ensured the coincidence of their operating conditions and guaranteed the correctness of the research. The technical condition and settings of the high-pressure fuel equipment for all three diesel engines were the same. It has been experimentally proven that the use of hydrogenated vegetable oil as fuel for marine diesel engines in comparison with marine motor fuels of petroleum origin leads to an improvement in the quality of the working cycle, combustion intensity and heat release in the cylinder, as evidenced by a decrease in the exhaust gas temperature by 11-25 ° С; a decrease in vapor formation during fuel combustion and cooling of the cylinder group, which is reflected in a decrease in the content of metal impurities in the circulating oil by 2,5-9,0 mg/kg; an increase in environmental performance, which is confirmed by a decrease in the concentration of nitrogen oxides in the exhaust gases by 0,17-0,89 g/(kWh). The use of hydrogenated vegetable oil as fuel for marine diesel engines is possible at any load modes.

Article Details

How to Cite
Sagin, S., & KuropyatnykО. (2026). Assessment of the possibility of using hydrotreated vegetable oil as fuel in marine diesel engines. Herald of the Odessa National Maritime University, (78), 81-96. https://doi.org/10.47049/2226-1893-2025-4-81-96
Section
Technical problems of operation of ship power and electrical power equipment
Author Biographies

S. Sagin, National University «Odesa Maritime Academy», Odesa, Ukraine

Dr. of Eng., professor, Head of the department «Ship’s Power Plants»

О. Kuropyatnyk, National University «Odesa Maritime Academy», Odesa, Ukraine

PhD, doctoral student of the department «Ship’s Power Plants»

References

1. Petrychenko O., Levinskyi M., Goolak S., Lukoševiˇcius V. (2025). Prospects of Solar Energy in the Context of Greening Maritime Transport. Sustainability. 17, 2141. https://doi.org/10.3390/su17052141.
2. Kuropyatnyk O.A. Reduction of NOx emission in the exhaust gases of low- speed marine diesel engines. (2018). Austrian Journal of Technical and Natural Sciences. Р. 7-8. 37-42.
3. Poberezhniy R.V., Sagin S.V. Zabezpechenya ecologichnych pokaznikiv dizeliv suden richkovogo ta morskogo transport. (2020). Ship power plants. 41. Р. 5-9. DOI:10.31653/smf340.2020.5-9.
4. Sagin S., Sagin A. (2023). Development of method for managing risk factors for emergency situations when using low-sulfur content fuel in marine diesel engines. Technology Audit and Production Reserves. 5 (1(73)). Р. 37-43. doi: https://doi.org/10.15587/2706-5448.2023.290198.
5. Goolak S.. Riabov I., Petrychenko O., Kyrychenko M., Pohosov O. (2025). The simulation model of an induction motor with consideration of instan- taneous magnetic losses in steel. Advances in Mechanical Engineering. 17(2). doi:10.1177/16878132251320236.
6. Zablotskyi Yu.V. (2020). Pidvishenya palivnoi economichnosti sudnovih dizelnih ustanovok. Visnik Odeskogo nacionalnogo morskogo universitety. 2. Р. 106-119. DOI: 10.47049/2226-1893-2020-1-106-119.
7. Levchenko O.V., Maranov O.V. (2025). Integration of combined decision support systems to ensure navigational safety and optimize vessel traffic in port areas. Water transport. 1(42). Р. 99-108. doi.org/10.33298/2226-8553.2025.1.42.14.
8. Sagin S.V., Kuropyatnyk O.A. (2021). Using exhaust gas bypass for achieving the environmental performance of marine diesel engines. Austrian Journal of Technical and Natural Sciences.7-8. Р. 36-43. https://doi.org/10.29013/AJT-21-7.8-36-43.
9. Rusnak D.Y., Sagin S.V. (2020). Zabezpechenya ecologichnich vumog pri ultrazvukovii desulphurizacii vuglevodnich paliv. Ship power plants. 40. Р. 49-54. DOI: 10.31653/smf340.2020.49-54.
10. Zablotskyi Yu.V. (2020). Pidvishenya economichnosti roboti sudnovih dizeliv. Ship power plants. 40. Р. 12-16. DOI: 10.31653/smf340.2020.12-16.
11. Levchenko O. (2021). Synthesis of vessels' options in dangerous situations taking into account time and resource restrictions in vessel DSS. Water transport. 3(34). 89-98. https://doi.org/10.33298/2226-8553/2021.3.34.10.
12. Zablotskyi Yu.V. (2018). Znizhennya teplovoi napruzhenosti sugnovih dizeliv za rahunok vikoristannya prisadok do paliva. Ship power plants. 38. Р. 76-87.
13. Petrychenko O., Levinskyi M. (2024). Trends and preconditions for wides- pread adoption of liquefied natural gas in maritime transport. Transport Sys- tems and Technologies. 43. Р. 21-36. DOI:10.32703/2617-9059-2024-43-2.
14. Zablotskyi Yu.V. (2015). Issledovanie vliyaniya ogranicheskih pokritii na rabotu elementov toplivnoi apparaturi visokogo davleniya sudovih dizelei. Ship power plants. 35. Р. 83-92.
15. Zablotskyi Yu.V., Sagin A.S. (2022). Viznachenya dunamichnih navanta- zhen pid chas zmini rezhimiv mashchennya preciziinich par palivnoi aparaturi sudnovih diziliv. Ship power plants. 44. Р. 121-131. doi: 10.31653/smf44.2022.121-131.
16. Sagin A.S., Zablotskyi Yu.V. (2022). Regeneraciya zmashuvalnih vlastivo- stei motornih paliv i mastil pid chas ekspluatacii sudnovih diziliv. Ship power plants. 45. Р. 17-30. doi: 10.31653/smf45.2022.17-30.
17. Zverkov D.О., Sagin S.V. (2020). Znizhenya mechanichnich vtrat u sudno- vich dizelyach. Ship power plants. 41. Р. 20-25. DOI: 10.31653/smf341. 2020.20-25.
18. Sagin A.S. (2023). Koreguvannya nalashtuvannya palivnoi aparaturi viso- kogo tisku pid chas perevedennya sudnovih diziliv na palivo z nizkim vmis- tom sirki. Automation of ship tech-nical facilities. 28. Р. 67-78. DOI: 10.31653/1819-3293-2023-1-28-67-78.
19. Sagin S., Kuropyatnyk O., Tkachenko I. (2022). Ensuring the environmental friendliness of marine diesel engines of specialized ships. Ship power plants. 45. Р. 5-16. doi: 10.31653/smf45.2022.5-16.
20. Levchenko O.V., Hannoshyna I.M., Ostupchuk T.V.(2025). Information support system for decision-making processes on the bridge of a ship. Water transport. 1(42). P. 24-27. doi.org/10.33298/2226-8553.2025.1.42.04.
21. Zablotskyi Yu.V. (2023). Znizhennya vtrat energii pid chas zabezpechennya procesiv mashennya sudnovih dviguniv vnutrishnogo zgoryannya. Ship power plants. 47. Р. 23-31. doi: 10.31653/smf47.2023.23-31.
22. Zablotskyi Yu.V., Solodovnikov V.G. (2013). Snizhenie energetishnih poter v toplivnoi apparature sudovih dizelei. Снижение энергетических потерь в топливной аппаратуре судовых дизелів. Problemi tehniki. 3. Р. 46-56.
23. Sagin S.V., Stolyaryk Т.О. (2021). Dinamika sudnovih dizeliv pid chas vikoristanya motornich mastil z riznimi structurnimi harakteristikami. Automation of ship technical facilities. 27. Р. 108-119. DOI: 10.31653/1819- 3293-2021-1-27-108-119.
24. Marchenko О.О., Sagin S.V. (2020). Vdoskonalenya procesu ochishenya sudnovih vazhkih paliv. Ship power plants. 41. Р. 10-14. DOI: 10.31653/smf341.2020.10-14.
25. Sagin A.S., Zablotskyi Yu.V. Reliability maintenance of fuel equipment on marine and inland navigation vessels. (2021). Austrian Journal of Technical and Natural Sciences.7-8.Р.14-17. https://doi.org/10.29013/AJT-21-14-17.
26. Sagin S.V. (2019). Opredelenie diapazona stratafikacii vyazkosti smazoch- nogo msteriala v tribologicheskih sistemah sudnovih diziliv. Visnik Odes- kogo nacionalnogo morskogo universitety. 1. Р. 89-100.
27. Matskevich D.V., Sagin S.V., Hanmamedov S.A. (2010). Izmenenie reolo- gicheskih harakteristik smazochnih materialiv v tsirkulyatsionnoi maslyanoi sistemi v protsessi ekspluatatsii sredneovorotnogo dvigatelya. Ship power plants. 25. Р. 109-118.
28. Levinskyi M.V.; Shapo V.F. (2021). Adaptive control for technological type control objects. Advances in Intelligent Systems and Computing. 1231. Р. 565-575. https://doi.org/10.1007/978-3-030-52575-0_47.
29. Gorb S., Levinskyi M., Budurov M. (2021). Sensitivity Optimisation of a Main Marine Diesel Engine Electronic Speed Governor. Scientific Horizons. 24(11). Р. 9-19. https://doi.org/10.48077/scihor.24(11).2021.9-19.
30. Gorb S., Popovskii A., Budurov M. (2023). Adjustment of speed governor for marine diesel generator engine. International Journal of GEOMATE. 25(109). Р. 125-132. DOI: https://doi.org/10.21660/2023.109.m2312.
31. Levinskyi M.V., Levinskyi V.M. (2020). Choosing the structure and para- meters of vessel’s course automatic control system under the influence of water-wave disturbances. Automation of ship technical facilities. 26. Р. 27-40. DOI: 10.31653/1819-3293-2020-1-26-27-40.