Improving the operating modes of the exhaust gas recirculation system of marine diesel engines
Main Article Content
Abstract
Exhaust gas recirculation methods are considered as one of the most common methods that contribute to the reduction of nitrogen oxide emissions from marine diesel engines. It is determined that exhaust gas recirculation systems are technological solutions that ensure compliance with the requirements of Annex VI of MARPOL, in particular, compliance with the Tier III level for the concentration of nitrogen oxides in exhaust gases. The results of experimental studies performed on a MAN-Diesel 5G70ME-C10 marine diesel engine equipped with an exhaust gas recirculation system are presented. In order to improve the process of reducing nitrogen oxide emissions in the recirculation system, additional humidification of exhaust gases returning to the diesel cylinders was used. The studies were performed in the range of diesel engine operating loads of 60-90 % of nominal power and under the condition of 5-25 % of the exhaust gas recirculation degree. The studies were carried out in areas of special environmental control, which are subject to the requirements of Tier III MARPOL regarding the concentration of nitrogen oxides in exhaust gases. It was experimentally established that when using the recirculation system without additional humidification of exhaust gases, the emission of nitrogen oxides is reduced to values of 1,75-3,28 g/(kW⋅h). Additional humidification of exhaust gases contributes to the improvement of the environmental performance of the diesel engine, which is manifested in the reduction of nitrogen oxide emissions to values of 1,63-3,12 g/(kW⋅h). In both cases, the values obtained do not exceed the maximum possible value of 3,4 g/(kW⋅h), which meets the requirements of Tier III MARPOL. It is proposed to evaluate the efficiency of the operating modes of the recirculation system (for both cases – without and with additional humidification of exhaust gases) by environmental stability in terms of nitrogen oxide emissions. This indicator is 38,53-48,53 % in the case of operation of the recirculation system without additional humidification of exhaust gases and 43,53-52,06 % in the case of operation of the recirculation system with additional humidification of exhaust gases.
Article Details
References
2. Sagin, S.V., Kuropyatnyk, O.A. (2024). Viznachenya optimalnih rezhimiv ekspluatacii sudnovih dviguniv vnutrashnogo zgoryannya pid chas viko- ristannya biodizelnogo paliva. Ship power plants. 2024. 48. Р. 100-113. doi: 10.31653/smf48.2024.100-113.
3. Sagin, S.V., Kuropyatnyk, O.A. Using exhaust gas bypass for achieving the environmental performance of marine diesel engines. (2021). Austrian Journal of Technical and Natural Sciences.7-8. Р. 36-43. https://doi.org/10.29013/AJT-21-7.8-36-43.
4. Sagin, S.V., Kuropyatnyk, O.A. (2024). Viznachenya optimalnih rezhimiv procesiv upravlinnya vipusknimi gazami sudnovih duzeliv. Water transport. 2(40). Р. 173-185. doi.org/10.33298/2226-8553.2024.2.40.16.
5. Sagin, S., Kuropyatnyk, O., Matieiko, O., Razinkin, R., Stoliaryk, T., Vol- kov O. (2024). Ensuring Operational Performance and Environmental Sustainability of Marine Diesel Engines through the Use of Biodiesel Fuel. Journal of Marine Science and Engineering. 12. Р. 14-40. https://doi.org/10.3390/jmse12081440.
6. Kuropyatnyk, O.A. Reduction of NOx emission in the exhaust gases of low- speed marine diesel engines. (2018). Austrian Journal of Technical and Natural Sciences. 7-8. Р. 37-42.
7. Petrychenko, O., Levinskyi, M., Goolak, S., Lukoševiˇcius, V. (2025). Prospects of Solar Energy in the Context of Greening Maritime Transport. Sustainability. 17. Р. 21-41. https://doi.org/10.3390/su17052141.
8. Levinskyi, M.V.; Shapo, V.F. (2021). Adaptive control for technological type control objects. Advances in Intelligent Systems and Computing. 1231. Р. 565-575. https://doi.org/10.1007/978-3-030-52575-0_47.
9. Sagin, S.V., Sagin, A.S. (2023). Control ta diagnostuvanya nadiinosti ta eco- nomichnosti dizeliv morskih ta richkovih zasobiv transportu. Ship power plants. 46. Р. 118-131. doi: 10.31653/smf46.2023.118-131.
10. Sagin, S., Kuropyatnyk, O., Tkachenko, I. (2022). Ensuring the environ- mental friendliness of marine diesel engines of specialized ships. Ship power plants. 45. Р. 5-16. doi: 10.31653/smf45.2022.5-16.
11. Rusnak, D.Y., Sagin, S.V. (2020). Zabezpechenya ecologichnich vumog pri ultrazvukovii desulphurizacii vuglevodnich paliv. Ship power plants. 40. Р. 49-54. DOI: 10.31653/smf340.2020.49-54.
12. Sagin, S., Sagin, A. (2023). Development of method for managing risk factors for emergency situations when using low-sulfur content fuel in marine diesel engines. Technology Audit and Production Reserves. 5 (1(73)). Р. 37-43. doi: https://doi.org/10.15587/2706-5448.2023.290198.
13. Zablotskyi, Yu.V. (2020). Pidvishenya economichnosti roboti sudnovih dize- liv. Ship power plants. 40. Р. 12-16. DOI: 10.31653/smf340.2020.12-16.
14. Sagin, S.V., Madey, V.V., Sagin, S.S., Chimshir, V.І., Razinkin, R.О. (2023). Analiz ecologichnoi stiicosti ta energetuchnoi efectivnosti vicoristanya scru- bernogo ochishenya vipusknich gaziv dizeliv sudden morskogo transportu. Ship power plants. 47. Р. 157-171. doi: 10.31653/smf47.2023.157-171.
15. Poberezhniy, R.V., Sagin, S.V. Zabezpechenya ecologichnych pokaznikiv dizeliv suden richkovogo ta morskogo transport. (2020). Ship power plants. 41. Р. 5-9. DOI:10.31653/smf340.2020.5-9.
16. Sagin, S.V., Poberezhniy, R.V. Analiz osnovnich sposobiv znizhenya emisii oksidiv azotu dizeliv suden morskogo ta vnutrishnego vodnogo transportu. (2022). Ship power plants. 44. Р. 132-141. Doi: 10.31653/smf 44.2022.132-141.
17. Zablotskyi, Yu.V. (2020). Pidvishenya palivnoi economichnosti sudnovih dizelnih ustanovok. Visnik Odeskogo nacionalnogo morskogo universitety. 2. Р. 106-119. DOI: 10.47049/2226-1893-2020-1-106-119.
18. Marchenko, О.О., Sagin, S.V. (2020). Vdoskonalenya procesu ochishenya sudnovih vazhkih paliv. Ship power plants. 41. Р. 10-14. DOI: 10.31653/smf341.2020.10-14.
19. Sagin, A.S., Zablotskyi, Yu.V. Reliability maintenance of fuel equipment on marine and inland navigation vessels. (2021). Austrian Journal of Technical and Natural Sciences. 7-8. 14-17. https://doi.org/10.29013/AJT-21-7.8-14-17.
20. Sagin, S.V., Madey, V.V., Sagin, A.S. (2021). Robota sudnovogo dizelya na biodizelnom palivi. Automation of ship technical facilities. 27. Р. 93-107. DOI: 10.31653/1819-3293-2021-1-27-93-107.
21. Sagin, S.V., Bondar, S.А. (2023). Metod poperedzhenya avariinih situacii pid chas ekspluatacii sudnovih dizeliv za analizom potocu vidmov iogo osnovnih vuzliv. Ship power plants. 46. Р. 101-109. doi: 10.31653/smf46.2023.101-109.
22. Sagin, S.V. (2018). Znizhenya energetichnih vtrat v precizionih parah palivnoi aparaturi sudnovich dizeliv. Ship power plants. 38. Р. 132-142.
23. Zverkov, D.О., Sagin, S.V. (2020). Znizhenya mechanichnich vtrat u sudno- vich dizelyach. Ship power plants. 41. Р. 20-25. DOI: 10.31653/smf341.2020.20-25.
24. Levinskyi M.V., Levinskyi V.M. (2020). Choosing the structure and parame- ters of vessel’s course automatic control system under the influence of water- wave disturbances. Automation of ship technical facilities. 26. Р. 27-40. DOI: 10.31653/1819-3293-2020-1-26-27-40.
25. Sagin, S.S., Sagin, S.V. (2024). Vicoristanya shtuchnogo intelektu v situa- ciyah nadmirnogo zblizhenya suden. Water transport. 1(39). Р. 215-225. doi.org/10.33298/2226-8553.2024.1.39.22.
26. Sagin, S.V. (2019). Opredelenie diapazona stratafikacii vyazkosti smazoch- nogo msteriala v tribologicheskih sistemah sudnovih diziliv. Visnik Odes- kogo nacionalnogo morskogo universitety. 1. Р. 89-100.
27. Sagin, S.V., Stolyaryk, Т.О. (2021). Dinamika sudnovih dizeliv pid chas vikoristanya motornich mastil z riznimi structurnimi harakteristikami. Automation of ship technical facilities. 27. Р. 108-119. DOI: 10.31653/1819-3293-2021-1-27-108-119.
28. Zablotskyi, Yu.V., Solodovnikov, V.G. (2013). Snizhenie energetishnih poter v toplivnoi apparature sudovih dizelei. Снижение энергетических потерь в топливной аппаратуре судовых дизелів. Problemi tehniki. 3. Р. 46-56.
29. Matskevich, D.V., Sagin, S.V., Hanmamedov, S.A. (2010). Izmenenie reolo- gicheskih harakteristik smazochnih materialiv v tsirkulyatsionnoi maslyanoi sistemi v protsessi ekspluatatsii sredneovorotnogo dvigatelya. Ship power plants. 25. Р. 109-118.
30. Zablotskyi, Yu.V. (2015). Issledovanie vliyaniya ogranicheskih pokritii na rabotu elementov toplivnoi apparaturi visokogo davleniya sudovih dizelei. Ship power plants. 35. Р. 83-92.
31. Gorb, S., Levinskyi, M., Budurov, M. (2021). Sensitivity Optimisation of a Main Marine Diesel Engine Electronic Speed Governor. Scientific Horizons. 24(11). 9-19. https://doi.org/10.48077/scihor.24(11).2021.Р.9-19.