The solution of shafting alignment problems with feedback using the generalized relaxation method

Main Article Content

O.I. Ursolov

Abstract

The marine shafting bending calculation is considered. The calculation takes into account bracket deflections and deformations of the aftmost bearing bush, which is represented as a non-linear elastic foundation. The relaxation method for successive approximations is proposed, providing calculation convergence in problems with feedback. The efficiency of the method compared to the simple successive approximations is shown in the example of the bending calculation of typical shafting design with a bracket

Article Details

How to Cite
Ursolov, O. (2020). The solution of shafting alignment problems with feedback using the generalized relaxation method. Herald of the Odessa National Maritime University, (59(2), 91-106. https://doi.org/10.33082/2226-1915-2-2019-91-106
Section
Design of ships
Author Biography

O.I. Ursolov, Admiral Makarov National University of Shipbuilding

postgraduate student, master department of Theory and design of ship

References

1. Paliy O.M. (1982) Spravochnik po stroitel'noy mekhanike korablya [Handbook of ship structural mechanics]. Leningrad: Sudostroenie, Vol. 2, 464 p. (in Russian)
2. Mourelatos Z.P., Parsons M.G. (1985) Finite-element analysis of elastohydrodynamic stern bearings. SNAME Transactions. Vol. 93., no. 11, pp. 225-259.
3. Turchak L.I. (1987) Osnovy chislennykh metodov [Fundamentals of Numerical Methods]. Moskow: Nauka, 320 p. (in Russian)
4. Postnov V.A., Suslov V.P. (1987) Stroitel'naya mekhanika korablya i teoriya uprugosti [Structural mechanics of the ship and the theory of elasticity]. Leningrad: Sudostroenie, Vol. 1, 288 p. (in Russian)
5. Darkov A.V., Shaposhnikov N.N. (1986) Stroitel'naya mekhanika [Structural mechanics]. Moslow: Vysshaya shkola, 8 ed, 607 p. (in Russian)
6. Jayanti S. (2018) Computational Fluid Dynamics for Engineers and Scientist. Dordrecht: Springer, 402 p. ISBN: 978-94-024-1215-4.
7. Tang T. (2014) Modeling of soil-water-structure interaction (PhD Thesis) Kgs. Lyngby: Technical University of Denmark.
8. De Kraker A., van Ostayena R.A., Rixen D.J. (2007) Calculation of Stribeck curves for (water) lubricated journal bearings. Tribology International, Vol. 40, pp. 459-469.
9. Ursolov A.I., Batrak Yu.A. (2017) Primenenie metodov optimizatsii v raschete izgiba sudovogo valoprovoda, podshipniki kotorogo rabotayut v rezhime gidrodinamicheskoy smazki [The use of optimization methods in bending calculation of the marine shaftline with hydrodynamic lubricated bearings]. Proceedings of the Suchasni tekhnolohii proektuvannia pobudovy ekspluatatsii i remontu suden morskykh tekhnichnykh zasobiv i inzhenernykh sporud materialy VII mizhnar. nauk.-tekhn. konf., Mykolaiv: NUK, pp. 64-67 (in Russian)
10. Postnov V.A., Kharkhurim I.Ya. (1974) Metod konechnykh elementov v raschetakh sudovykh konstruktsiy [The finite element method in the calculation of ship constructions]. Leningrad: Sudostroenie, 344 p. (in Russian)
11. Przemieniecki J.S. (1968) Theory of matrix structural analysis. New York: Dover Publications, Inc., 468 p.
12. Batrak Yu.A., Ursolov A.I. (2016) Matritsa zhestkosti sterzhnevogo konechnogo elementa, lezhashchego na nelineynom uprugom osnovanii [Stiffness matrix of a beam finite element that lies on nonlinear elastic foundation]. Proceedings of the Suchasni tekhnolohii proektuvannia pobudovy ekspluatatsii i remontu suden morskykh tekhnichnykh zasobiv i inzhenernykh sporud materialy vse-ukrainskoi nauk.-tekhn. konf. z mizhnarodnoiu uchastiu., Mykolaiv: NUK. (in Russian)
13. Ursolov A.I., Batrak Yu.A. Raschet izgiba vala, lezhashchego na podshipnikakh, predstavlennykh nelineynym odnostoronnim upru-gim osnovaniem konechnoy dliny [The calculation of the shaft bending that lying on the bearings presented by a nonlinear unila-teral elastic foundation with finite length]. Proceedings of the Innovatsii v sudnobuduvanni ta okeanotekhnitsi materialy VII nauk.-tekhn. konf., Mykolaiv: NUK. (in Russian)