Calculation of parameters of the modernized Weibull equation

Main Article Content

A.V. Konoplev
Yu.О. Hryhoriev
L.I. Kusik

Abstract

The results of fatigue resistance tests are described by various equations, the most common of which are the power law equation, the exponential equation, and the Weibull equation. The choice of each of them depends on the specific task at hand. Most often, two-parameter equations are preferred - the power and exponential equations ‒ as they are the simplest and most versatile. To select a particular equation, it is necessary to establish a criterion, or a group of criteria, which could be used to justify the decision. One such obvious criterion is the correlation coefficient. The results of numerous experiments indicate that it is practically the same for the power law and exponential models of the fatigue curve, and for the Weibull equation, in its canonical form, it is usually slightly lower. The paper solves the problem of increasing the correlation coefficient of the Weibull equation by replacing one of the parameters (endurance limit) with a variable value. The required result was achieved by varying the three values of this equation when constructing a fatigue curve using the least squares method. Calculations were performed in Excel and the Maxima computer mathematics system

Article Details

How to Cite
Konoplev, A., Hryhoriev, Y., & Kusik, L. (2025). Calculation of parameters of the modernized Weibull equation. Herald of the Odessa National Maritime University, (75), 42-68. https://doi.org/10.47049/2226-1893-2025-1-42-68
Section
Tightening and strength of machine parts
Author Biographies

A.V. Konoplev, Odesa National Maritime University, Odesa, Ukraine

Doctor of Technical Sciences, Professor, Head of the Department of Mechanical Engineering and Mechanical Engineering

Yu.О. Hryhoriev, Odesa National Maritime University, Odesa, Ukraine

Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Mathematics, Physics and Astronomy

L.I. Kusik, Odesa National Maritime University, Odesa, Ukraine

Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Mathematics, Physics and Astronomy

References

1. Olejnik N.V., Sklyar S.P. Priskoreni viprobuvannya na vtomu. Kiyiv: Naukova dumka, 1985. 304 s.
2. Ryabov B.A., Bishko M.D. Zv'yazok mizh parametrami krivih vtomi v logarifmichnih ta napivlogarifmichnih koordinatah. // Detali mashin: Resp. mizhved. nauk. – tehn. zb. 1990. Vip. 50. S. 57-60.
3. Olejnik V.N., Konoplev A.V. Vzayemozv'yazok parametriv riznih modelej krivih vtomi. // Detali mashin: Resp. mizhved. nauk.-tehn. zb. 1991. Vip. 54. S. 83-89.
4. Olejnik N.V., Konoplev A.V., Kibakov A.G. Metodi priskorenogo vizna- chennya harakteristik oporu vtomi v praktichnih zastosuvannyah. Odesa: Astroprint, 2000. 138 s.
5. Konoplev A.V., Hryhoriev Yu.O., Galevskij V.V. Sposib pererahunku para- metriv dvoh modelej krivoyi vtomi // Visnik Odeskogo nacionalnogo mors- kogo universitetu: 36 nauk. Prac, 2023. № 4 (71). S. 87-95. DOI 10.47049/2226-1893-2023-4-87-95.
6. Chichkarov Ye.A., Chornovian Yu.O. Pidruchnik-dovidnik iz sistemi komp’yuternoyi algebri Maxima (pereklad ukrayinskoyu, dopovnennya, osuchasnennya). Rozpovsyudzhuyetsya zgidno z umovami licenzuvannya GNU FDL. 2020 r. 186 s.