Influence of design parameters common rail fuel injection systems on the characteristics of the fuel supply of RT-Flex engines

Main Article Content

E. Polovinka
I. Tabulynsky

Abstract

The composition of diesel fuel supply systems consists, first of all, in the selection of design parameters of the main functional elements.   Understanding the role of these factors is also necessary for the efficient operation of fuel supply systems and the engine as a whole. Accumulator fuel supply systems of modern RT-Flex diesels of the Common Rail type are quite widely covered in the technical literature, but no attention was paid to the issue of the influence of design parameters on fuel injection characteristics. In this study, the influence of the design parameters of the main module of the system ‒ the injection control unit (Injection Control Unit-ICU) ‒ on the fuel supply process was studied. The unit itself is a device that ensures the operation of the DP BUV dosing piston (QP-Quantity Piston). Its diameter dp varied in the range of 40-120 mm in the process of simulation using the GT-Power program. The change of fuel pressure in the main elements of the BUV: the buffer pb.p and working p.p cavities, as well as in the pf nozzle, was considered. When dp increases from 40 to 120 mm, pb.p decreases by 3,3 %, and p.p under the same conditions increases from 465 to 706 bar (by 241 bar or 41 %), pf also increases: from 383 to 564 bar. The speed of the DP movement is very sensitive to changes in the conditions of the latter's movement. Even barely noticeable changes in the mode of displacement of the DP lead to a jump-like change in vp. Cyclic fuel supply qts, with an increase in dp, increased from 0,0146 kg to 0,0189 kg by 0,0046 kg (27,4 %).


Legend:

oPKV – degrees of rotation of the crankshaft; RP BUV – working cavity of the BUV;


BP BUV – buffer cavity of BUV; xn   – coordinate of DP;


vp     – speed of DP;


рp. – pressure in the working cavity of the BUV; pb.p. – pressure in the buffer cavity of the BUV; pf        – pressure in the nozzle;


dp – diameter of the dosing piston; qts – cyclic fuel supply.


gт – injection intensity;


ϕ – angle of rotation of the crankshaft.

Article Details

How to Cite
Polovinka, E., & Tabulynsky, I. (2024). Influence of design parameters common rail fuel injection systems on the characteristics of the fuel supply of RT-Flex engines. Herald of the Odessa National Maritime University, (73), 126-145. https://doi.org/10.47049/2226-1893-2024-2-126-145
Section
Problems of operation of shipboard power equipment
Author Biographies

E. Polovinka, National University «Odesa Maritime Academy», Odesa, Ukraine

DTSc, professor Department «Ship power plants»

I. Tabulynsky, National University «Odesa Maritime Academy», Odesa, Ukraine

1-st Class Engineer, Senior Teacher Department « Technical operation of the fleet»

References

1. Lu. X. Fuel design and management for the control of advanced compression-ignition combustion modes/X. Lu, D. Han, Z. Huang // Prog. Energy Combust. Sci, 2011. ‒ 37. ‒ Р. 741-783.
2. Kiplimo R. Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine / R. Kiplimo, E. Tomita, N. Kawahara, S. Yokobe // Appl. Therm. Eng., 2012. ‒ 37. ‒ Р. 165-175.
3. Noehre C. Characterization of partially premixed combustion/C. Noehre, M. Andersson, B. Johansson, A. Hultqvist //SAE Technical Paper, 2006. ‒ 2006-01-3412. ‒ Р. 19.
4. Benajes J. Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept / J. Benajes, S. Molina, A. García, J. Monsalve-Serrano// Appl. Energy, 2014. ‒ 134. ‒ Р. 90-101.
5. Kokjohn S.L. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion / S.L. Kokjohn, R.M. Hanson, D. Splitter, R. Reitz // Int. J Engine Res., 2011. ‒ 12. ‒ Р. 209-226.
6. Benajes J. Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine / J. Benajes, S. Molina, A. García, J. Monsalve-Serrano // Energy, 2015. ‒ 90. ‒ Р. 1261-1271.
7. Kimura S. Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards / S. Kimura, O. Aoki, Y. Kitahara, E. Aiyoshizawa // SAE Technical Paper, 2001. ‒ 2001-01-0200. ‒ Р. 16.
8. Kimura S. New combustion concept for ultra-clean and high-efficiency small DI diesel engines/ S. Kimura, O. Aoki, H .Ogawa, S. Muranaka // SAE Technical Paper, 1999. ‒ 1999-01-3681. ‒ Р. 12.
9. Zhang B. Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process / B. Zhang, E. Jiaqiang, J. Gong, W. Yuan // Appl. Energy, 2016. ‒ 181. ‒ Р. 14-28.
10. Deng Y. Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model / Y. Deng, H. Liu, X. Zhao, E. Jiaqiang // Appl Energy, 2018. ‒ 210. ‒ Р. 279-287.
11. Agarwal A.K. Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine / A.K. Agarwal, D.K. Srivastava, A. Dhar, R.K. Maurya //Fuel, 2013. ‒ 111. ‒ Р. 374-383.
12. Wang B. Numerical analysis of deposit effect on nozzle flow and spray cha- racteristics of GDI injectors / B. Wang, Y. Jiang, P. Hutchins, T. Badawy // Appl. Energy, 2017. ‒ 204. ‒ Р. 215-224.
13. Moon S. End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy / S. Moon, W. Huang, Z. Li, J. Wang // Appl. Energy, 2016. ‒ 179. ‒ Р. 7-16.
14. Gentz G.A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization / G. Gentz, M. Ghola- misheeri, E. Toulson // Appl. Energy, 2017. ‒ 189. ‒ Р. 385-394.
15. Lefebvre A.H. Atomization and sprays/ A.H. Lefebvre, V.G. Mc Donell // CRC press, 2017. ‒ Р. 300.
16. Xu Leilei. Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system / L. Xu, B. Xue-Song, J. Ming, Y. Qian // Applied Energy, 2018. ‒ November. ‒ 64 р.
17. Kangjia Du1. Structural simulation analysis of high pressure common rail pipe / Du Kangjia, Si Qin, Liu Dongdi, Zhou Xiaojun // Vibroengineering procedia. December, 2021. ‒ Vol. 39. ‒ Р. 170-175. ‒ https://www.extrica.com/article/22189/pdf
18. Huiya Gu.Analysis of structure for common-rail Based on AMESim / Gu Huiya, Tang Yan, Jiang Shunwen // Hydraulics Pneumatics and Seal, 2010. ‒ Vol. 4. ‒ Р. 16-18.
19. Kang Yanhong, Liu Xing, Wang Min, and Guo Haizhou / Effect of the outlet oil hole on pressurefluctuation of the high-pressure common-rail system // Internal Combustion Engines, 2015. ‒ Vol. 3. ‒ Р. 1-3.
20. Zilai Luo. Simulation and experiment study ofcommon rail pipe for marine heavy duty diesel engines / Luo Zilai, Chang Hanbao, Zhang Xiaohuai, Liu Boyun // Internal Combustion Engines, 2012. ‒ Vol. 6. ‒ Р. 37-39.
21. Mengmeng Dai. Simulation investigation on effect of pressure fluctuation in highpressure common rail on injection rate, (in Chinese) / Dai Mengmeng, Zhang Yonghui // Design and Manufacture of Diesel Engine, 2013. ‒ Vol. 19, No. 4. ‒ Р. 7-11.
22. Xinjun Wang .Simulation of CR system common – rail pipe / Wang Xinjun and Sun Dagang // Agricultural Equipment and Vehicle Engineering, 2009. ‒ Vol. 2. ‒ Р. 45-47.
23. Liu Feng. Numerical simulation researches on the effects of the common rail parameters for the rail internal pressure field / Feng Liu // Small Internal Combustion Engine and Vehicle Technique, 2014. ‒ Vol. 43, No. 5. ‒ Р. 24-29.
24. Zongzheng Dong. Flow field simulation analysis of high pressure water jet nozzle based on CFD / Dong Zongzheng, Fu Biwei, Guo Can, Xi Yan Qing // Petro and Chemical Equipment, 2016. ‒ Vol. 19, No. 7. ‒ Р. 20-23.