УДК 620:178.3 DOI 10.47049/2226-1893-2024-2-48-65

ПРО ВИБІР БАЗИ ВИПРОБУВАНЬ МАТЕРІАЛІВ ТА ДЕТАЛЕЙ НА ОПІР ВТОМІ

А.В. Конопльов

д.т.н., професор, завідувач кафедри «Машинознавство й інженерна механіка»
 О.М. Кононова
 к.т.н., доцент кафедри «Машинознавство й інженерна механіка»
 Н.І. Чередарчук
 к.т.н., доцент кафедри «Математика, фізика та астрономія»
 В.В. Галевський
 старший викладач кафедри «Машинознавство й інженерна механіка»
 С.М. Кокошко
 старший викладач кафедри «Підйомно-транспортні машини
 та інжиніринг портового технологічного обладнання»

Одеський національний морський університет, Одеса, Україна

Анотація. Випробування на опір втомі дозволяють вирішувати багато завдань, пов'язаних із проектуванням, виготовленням та експлуатацією деталей машин. Їх актуальність обумовлена тим, що з їх допомогою можна досягти високої точності в оцінці втомної міцності деталей. Крім того, вони можуть бути єдиним способом для вирішення деяких спеціальних завдань. Наприклад, вони необхідні при визначенні характеристик опору втомі нових матеріалів і сплавів, під час проведення технічної експертизи деталей, що зруйнувалися в процесі експлуатації тощо.

Важливим чинником під час проведення випробувань на опір втомі є вибір бази випробувань, що зумовлює їх тривалість та результативність. При її виборі в першу чергу беруть до уваги характеристики міцності матеріалів, орієнтуючись також на рекомендації стандарту. Крім того, необхідно враховувати вид рівняння кривої втоми, від якого залежить співвідношення бази випробувань і точки перелому цієї кривої.

У роботі проведено аналіз зміни положення точки перелому кривої втоми залежно від границі витривалості для трьох рівнянь (степеневого, показового та Вейбула). Для проведення розрахунків були використані кореляційні взаємозв'язки між параметрами цих рівнянь та границею витривалості. Аналіз отриманих результатів показав, що положення точці перелому кривої втоми залежить від вибору її рівняння.

Ключові слова: база випробувань на опір втомі, криві багатоциклової втоми, границя витривалості, кореляційні залежності.

[©] Конопльов А.В., Кононова О.М., Чередарчук Н.І., Галевський В.В., Кокошко Є.М., 2024

UDC 620:178.3 DOI 10.47049/2226-1893-2024-2-48-65

ON THE CHOICE OF THE TESTING BASE FOR MATERIALS AND COMPONENTS FOR FATIGUE RESISTANCE

A. Konoplev

Doctor of Technical Sciences, Professor, Head of the Department of «Machine Science and mechanical engineering»

O. Kononova

Ph.D. Associate Professor of the Department of «Machine Science and mechanical engineering»

N. Cheredarchuk

Ph.D. Associate Professor of the Department «Mathematics, physics and astronomy»

V. Halevskyi

Senior Lecturer of the Department «Machine Science and mechanical engineering» Y. Kokoshko

Senior Lecturer at the Department of «Hoisting and Transport Machines and Engineering of Port Technological Equipment»

Abstract. Fatigue resistance testing allows solving many tasks related to the design, manufacturing, and operation of machine parts. Their relevance is due to the fact that they can achieve high accuracy in assessing the fatigue strength of components. Moreover, they may be the only way to address certain specialized tasks. For example, they are indispensable for determining the fatigue resistance characteristics of new materials and alloys, conducting technical expertise of parts that failed during operation, and so on.

An important factor in conducting fatigue resistance tests is the choice of the testing base, which determines their duration and effectiveness. When choosing it, the strength characteristics of materials are primarily taken into account, also considering the recommendations of the standard. Additionally, it is necessary to consider the type of fatigue curve equation, which determines the relationship between the testing base and the fracture point of this curve.

The paper analyzes the change in the position of the fatigue curve fracture point depending on the endurance limit for three equations (power, exponential, and Weibull). Correlation relationships between the parameters of these equations and the endurance limit were used for calculations. The obtained dependencies lead to the disappointing conclusion that the nature of the findings is contradictory and influenced by the choice of the fatigue curve model.

Keywords: fatigue resistance testing base, multicycle fatigue curves, endurance limit, correlation dependencies.

Вступ. Відповідно до стандарту (ГОСТ 25.502-79) базу випробувань на опір втомі для металів та сплавів, що мають практично горизонтальну ділянку на кривій втомі, приймають рівною 10⁷ циклів. При проведенні порівняльних випробувань

база для визначення границь витривалості може бути прийнята рівною $3 \cdot 10^6$ або $10 \cdot 10^6$ циклів.

Зазначені в стандарті бази випробувань відносяться переважно до звичайних вуглецевих сталей. У той же час, при існуючому різноманітті сплавів на основі заліза питання про наявність у них фізичної границі витривалості на базі 10⁷ циклів не є однозначним.

Дослідження, проведені в різні часи, свідчать про те, що для легованих сталей границя витривалості зазвичай досягається при великих значеннях довговічності. Так у роботі [1] зазначено, що для визначення границі витривалості легованих сталей з границею міцності при розтягуванні $\sigma_B = 942$ МПа необхідно проводити випробування на базі $20 \cdot 10^6$ циклів. Для марок сталей з підвищеною границею міцності (понад 1256 МПа) вона повинна становити $40 \cdot 10^6$ циклів, а для сталей, у яких величина σ_B перевищує 1727 МПа, вона має становити $(100 - 300) \cdot 10^6$ циклів. До теперішнього часу залишається відкритим питання про існування границі витривалості у сталей високої та надвисокої міцності, однак, для вирішення багатьох практичних завдань зазначені вище значення баз випробувань цілком достатні.

Іншою особливістю поведінки легованих сталей з високою границею міцності є те, що розсіювання їх границь витривалості збільшується зі зростанням границі міцності σ_R [1].

Метою статті є статистичне дослідження області переходу похилої ділянки кривої втоми в горизонтальну з метою оптимального вибору бази випробувань для матеріалів деталей різної міцності.

Виклад основного матеріалу. У роботі [2] розглянуто завдання прогнозування бази випробувань для об'єктів із вуглецевих та легованих сталей на основі статистичних даних, отриманих при обробці репрезентативної вибірки результатів випробувань. До складу вибірки були включені результати випробувань як натурних деталей, так і лабораторних зразків. При цьому вибірка була сформована таким чином, що до неї потрапили криві втоми, отримані при різних видах напруженого стану, для різних марок сталі в широкому діапазоні змін масштабного фактору і теоретичного коефіцієнта концентрації напружень. Крім того, до масиву даних були включені результати випробувань об'єктів з різними видами поверхневого зміцнення та термообробки.

Отримані на основі статистичної обробки кореляційні залежності параметрів кривої втоми від границь витривалості ґрунтуються на гіпотезі про те, що положення кривої втоми залежить від тих самих факторів, що й границя витривалості. За модель кривої втоми було прийнято степеневе рівняння

$$\sigma^{m_c} \cdot N = 10^{C_c} \,, \tag{1}$$

де σ і *N* – поточні значення напружень та довговічності до руйнування відповідно;

 m_c і C_c – параметри;

 σ_{R} – границя витривалості.

Середньоймовірні значення параметрів цього рівняння пов'язані з границею витривалості наступними співвідношеннями:

$$m_c = 0,0273\sigma_R + 1,367;$$
 (2)

та

$$C_c = 0,0823\sigma_R + 5,881.$$
 (3)

Їхні вибіркові коефіцієнти кореляції відповідно склали 0,8744 і 0,9063. Сам факт існування цих кореляційних залежностей не означає того, що вони не потребують перевірки за тими чи іншими показниками. Зокрема, при визначенні параметрів m_C і C_C при заданому значенні σ_R необхідно встановити чи будуть абсциси точок перелому кривої втоми в широкому інтервалі значень границі витривалості відповідати реальній картині, що спостерігається в експерименті. У табл. 1 наведено розрахункові значення параметрів m_C і C_C , розраховані за формулами (1) і (2), а також абсциси точки перелому кривої втоми N_G , яка виражена степеневим рівнянням [2].

Таблиця 1

$\sigma_{\scriptscriptstyle R}$, МПа	m _c	C _c	N _G
50	2,732	9,996	226000
60	3,005	10,819	301000
70	3,278	11,642	393000
80	3,551	12,465	509000
90	3,824	13,288	655000
100	4,097	14,111	826000
200	6,827	22,341	4285000
300	9,557	30,571	6281000
400	12,287	38,801	6761000
500	15,017	47,031	3162000
600	17,747	55,261	912000
700	20,477	63,491	171400
800	23,207	71,721	224400
900	25,937	79,951	21500
1000	28,667	88,181	150

Розрахункові значення m_c , C_c і N_G , розраховані за формулами (1) та (2)

ВІСНИК	HERALD
ОДЕСЬКОГО НАЦІОНАЛЬНОГО	OF THE ODESA NATIONAL
МОРСЬКОГО УНІВЕРСИТЕТУ	MARITIME UNIVERSITY
<u>№</u> 2 (73), 2024	№ 2 (73), 2024

Отриманий характер зміни точки перелому кривої втоми не узгоджується з більшістю експериментальних даних [2]. У зв'язку з цим було запропоновано замінити лінійну залежність параметра C_c від границі витривалості σ_R на нелінійну. При цьому цей параметр ставиться у залежність і від параметра m_c . Зокрема, було запропоновано наступну залежність.

$$\boldsymbol{C}_{\boldsymbol{C}} = 0,997(\boldsymbol{m}+1)\lg\boldsymbol{\sigma}_{\boldsymbol{R}} + \boldsymbol{\beta}_{\boldsymbol{C}}, \qquad (4)$$

де $\beta_c = 4,0+0,5(2,5-\lg\sigma_R)^2$. При $\lg\sigma_R \ge 2,5$ $\beta_c = 4,0$ (в середньому $\beta_c = 4,25$).

Представлені в табл. 1 результати розрахунку, графічно зображені як залежність $N_{G}(\sigma_{R})$ на рис. 1.

Рис. 1. Залежність N_{G} (σ_{R}), яка побудована за даними табл. 1

Значення параметрів m_C і C_C , які були розраховані за формулами (1) і (2), та величини абсциси точки перелому кривої втоми N_G наведено у табл. 2.

$\sigma_{\scriptscriptstyle R}$, МПа	m _c	C _c	$\lg N_G$	$N_{\pmb{G}}$, Цикл.
50	2,75	10,35	5,68	478468
60	3,02	11,13	5,76	571089
70	3,29	11,89	5,82	662747
80	3,56	12,65	5,88	753460
90	3,83	13,41	5,93	843197
100	4,1	14,17	5,97	931966
200	6,8	21,89	6,25	1766794
300	9,5	29,93	6,40	2506634
400	12,2	38,24	6,50	3155135
500	14,9	46,78	6,57	3717295
600	17,6	55,52	6,62	4198866
700	20,3	64,42	6,66	4605757
800	23	73,47	6,69	4943904
900	25,7	82,64	6,72	5219213
1000	28,4	91,94	6,73	5437509

Розрахункові значення m_{c} , C_{c} і N_{g} , розраховані за формулами (1) та (3)

Залежність N_G (σ_R), яка побудована за даними табл. 2 показана на рис. 2. Ця залежність є монотонно зростаючою та відображає реальну тенденцію зміни величини N_G .

Рис. 2. Графік залежності N_{G} (σ_{R}), побудований за даними табл. 2

Поряд із степеневим рівнянням кривої втоми використовують показове рівняння, яке записується у вигляді

$$10^{\sigma_R/\kappa} \cdot N_{G\Pi} = 10^{\sigma/\kappa} N = 10^{\sigma_{d\Pi}/\kappa} = 10^{C_{\Pi}}, \qquad (5)$$

де K і C_{Π} – параметри;

 $\sigma_{d\Pi}$ – початкова ордината кривої втоми в координатах σ -lg N_G ; (σ – поточне напруження, що відповідає довговічності N).

Параметри цього рівняння K і $\sigma_{d\Pi}$, як і параметри степеневого рівняння m_c і C_c пов'язані кореляційними залежностями з границею витривалості. Для вуглецевих та легованих сталей вони мають вигляд [3]

$$K = 0,185\sigma_R + 15,2$$
 (MIIa); (6)

$$\sigma_{d\Pi} = 2,11\sigma_{R} + 132,5 \text{ (MIIa)}.$$
(7)

Величину абсциси точки перелому кривої втоми $\lg N_G$ у координатах σ - $\lg N$ можна виразити з рівняння (5)

$$\lg N_{GII} = \frac{1}{K} (\sigma_d - \sigma_R).$$
(8)

Результати розрахунку значень $\lg N_{G\Pi}$, а також K, C_{Π} $i N_{G\Pi}$, розрахованих за допомогою формул (6)-(8), наведені у таблиці 3.

Таблиця 3

$\sigma_{\it R}$, МПа	К , МПа	$\sigma_{d\Pi}$, МПа	lg N _{GП}	$N_{\it GII}$, цикл
50	24,45	238	7,69	48883417
60	26,3	259,1	7,57	37182810
70	28,15	280,2	7,47	29318404
80	30	301,3	7,38	23804917
90	31,85	322,4	7,30	19801737
100	33,7	343,5	7,23	16808126
200	52,2	554,5	6,79	6182836
300	70,7	765,5	6,58	3838472
400	89,2	976,5	6,46	2904053
500	107,7	1187,5	6,38	2418091
600	126,2	1398,5	6,33	2124508
700	144,7	1609,5	6,29	1929381
800	163,2	1820,5	6,25	1790869
900	181,7	2031,5	6,23	1687710
1000	200.2	2242 5	6.21	1608028

Розрахункові значення **K**, C_{II} , N_{GII} і $\lg N_{GII}$

Графік залежності N_{GII} (σ_R), побудований за даними табл. 3, представлений на рис. 3.

Рис. 3. Графік залежності N_{GII} (σ_R), побудований за даними табл. 3

Криві втоми, що описуються степеневим і показовим рівняннями, є складовими, що складаються з похилих та горизонтальних ділянок. Перетин цих ділянок визначає положення відповідних абсцис N_G і $N_{G\Pi}$ відповідно на графіках $\lg \sigma - \lg_N$ і $\sigma - \lg N$. Інша ситуація буде у разі використання рівнянь, які є асимптотичними. Наприклад, при використанні у якості моделі кривої втоми рівняння Вейбула точки перелому не буде. У цьому випадку умовно приймають припущення про те, що перехід від похилої ділянки до горизонтальної відбувається при величині напруження σ_R +1 МПа. Абсциса точки цього переходу C_W у координатах $\lg(\sigma - \sigma_R) - \lg_N$ може бути визначена з виразу

$$C_W = \lg N + m_W \lg (\sigma - \sigma_R), \qquad (9)$$

де m_W – кутовий параметр.

Емпіричні залежності параметрів m_W і C_W від границі витривалості отримані у роботі [4] у вигляді наступних нелінійних рівнянь:

$$m_W = \frac{1}{5,254 g^{01} - 5,038} - 1; \tag{10}$$

$$C_W = \lg \frac{\left(7,029 + 3599\right)^{W^{+1}}}{m+1}.$$
 (11)

Результати розрахунку параметра C_W залежно від границі витривалості, а також графік залежності C_W (σ_R) представлені у табл. 4. та на графіку (4).

$\sigma_{\it R}$, МПа	m_W	C_W	$\sigma_{\it R}$, МПа	m_W	C_W
50	1,35	7,99	400	0,85	6,31
60	1,30	7,81	500	0,81	6,18
70	1,25	7,66	600	0,78	6,07
80	1,22	7,54	700	0,75	5,98
90	1,18	7,43	800	0,73	5,90
100	1,16	7,34	900	0,71	5,84
200	0,99	6,79	1000	0,69	5,78
300	0,91	6,50			

Результати розрахунку параметрів m_W і C_W за залежностями (9) та (10)

Рис. 4. Графік залежності C_w (σ_R), побудований за даними табл. 4

Незважаючи на те, що всі залежності наведені на рис. 1-4, були побудовані з урахуванням репрезентативних вибірок, їх характер різний, за винятком двох останніх випадків. Крім того, у цих випадках має місце суперечність із результатами експериментів. Таким чином, питання про характер залежності абсциси точки перетину похилої та горизонтальної ділянок кривої втоми від границі витривалості залишається актуальним.

Для проведення аналізу та з'ясування реального характеру досліджуваної залежності звернемося до експериментальних даних випробувань зразків при симетричному круговому згині, виготовлених з конструкційних марок сталі 45 і 40Х. Результати їх випробувань представлені в табл. 5-10 [5].

тошпэ (Типэ пи	обувань кою рад	зразків іусом 2 .	(Сталь мм) та	45, _z A napame	=204 M. mpu pi&	Па, зра иянь I, 5	зки 5, 9.		
lg σ	lg N	m_c	C_c	K	C_{II}	m_W	C_W	lgN_{GC}	lgN_{GII}
2,477	4,859								
2,477	4,936								
2,477	4,993								
2,477	5,054								
2,477	5,299								
2,455	5,316								
2,455	5,316								
2,455	5,476	18,08	49,76	36,30	13,24	2,11	8,59	6,40	6,35
2,455	5,490								
2,455	5,596								
2,431	5,527								
2,431	5,559								
2,431	5,738								

285

308900

394400 336600

10

11

72200 86200 98300

цикл. Ν,

σ, ΜΠa

oбp.

Ņ

Таблиця 5

ВІСНИК ОДЕСЬКОГО НАЦІОНАЛЬНОГО МОРСЬКОГО УНІВЕРСИТЕТУ

№ 2 (73), 2024

Результати вип з кільцевою вито

57

199200 206800 206800 299100

5 9 \sim ∞ 6

113300

300

 \sim \sim 4

HERALD OF THE ODESA NATIONAL MARITIME UNIVERSITY № 2 (73), 2024

5,7805,847

2,431 2,431

602600 547100

703600

362400

 \Box 13 14 15

																		-	-	
lgN_{GII}										637	0,02									
lgN_{GC}											00,0									
C_W										7 65	<i>c</i> 0,/									
${}^{M}\boldsymbol{u}$										07 1	1,40									
C_{II}										11 25	CC,11									
Κ											47,24									
C_c										1220	20,04									
m_c	13,02																			
lg N	4,89	4,94	5,01	5,06	5,17	5,29	5,37	5,42	5,48	5,57	5,77	5,85	5,87	5,92	6,01	6,09	6,09	6,44	6,45	6,59
lg σ	2,43	2,43	2,43	2,43	2,43	2,40	2,40	2,40	2,40	2,40	2,36	2,36	2,36	2,36	2,36	2,32	2,32	2,32	2,32	2,32
<i>N</i> , цикл.	77300	87300	103000	115900	146900	001261	232900	262300	304400	370300	588700	708800	740700	835100	1100500	1237700	1240200	2784800	2806300	3931800
σ, МПа			270					250					230			210				
Ne obp.	Ι	7	3	<i>†</i>	5	9	7	8	9	0I	11	12	13	14	I2	91	I7	18	19	20

Результати випробувань зразків (Сталь 45, σ_R =204 МПа, зразки з кільцевою виточкою радіусом 2 мм) та параметри рівнянь 1, 5, 9.

Таблиця 6

58

ВІСНИК ОДЕСЬКОГО НАЦІОНАЛЬНОГО МОРСЬКОГО УНІВЕРСИТЕТУ № 2 (73), 2024

HERALD OF THE ODESA NATIONAL MARITIME UNIVERSITY № 2 (73), 2024

Сталь 45, σ_R =145 МПа, зразки IV типу	0,4 мм) та параметри рівнянь (1), (5), (9)
Результати випробувань зр	з кільцевою виточкою радіус

lgN_{GII}									0,44							
lgN _{GC}								650	0,00							
C_W								100	0,04							
${}^{M}\boldsymbol{u}$								1 07	1,0/							
C_{II}								11 0	0,44							
Κ								<i>(()</i>	/ Z, J Z							
C_c									20,94							
m_c		6,64														
lg N	4,99	5,05	5,10	5,13	5,22	5,33	5,33	5,42	5,39	5,54	5,66	5,69	5,95	6,07	6,07	6,12
lg σ	2,40	2,40	2,40	2,40	2,35	2,35	2,35	2,35	2,30	2,30	2,30	2,30	2,24	2,24	2,24	2,24
<i>N</i> , цикл.	98100	111300	124800	135000	165200	212500	215900	261800	244400	344900	457200	491700	896900	1166000	1172500	1303800
σ, MIIa		020	007			315	C77				200			175	C/1	
Nē oбp.	Ι	2	3	4	5	9	2	8	6	0I	II	12	13	t^{t}	15	16

HERALD OF THE ODESA NATIONAL MARITIME UNIVERSITY № 2 (73), 2024

Результати випробувань зразків (сталь 40Х, σ_R = 274 МПа, зразки з тороподібною виточкою 50 мм) та параметри рівнянь (1), (5), (9)

lgN_{GII}											0,30									
lgN_{GC}											0,29									
C_W											8,23									
мш										00.	1,92									
C_{II}											13,48									
K											58,15									
C_c											71,12									
m_c	18,66																			
lg N	4,75	4,84	4,87	4,88	4,91	5,02	5,05	5,04	5,26	5,27	5,44	5,48	5,50	5,53	5,68	5,84	5,87	5,90	5.93	6.05
lg σ	2,52	2,52	2,52	2,52	2,52	2,52	2,52	2,49	2,49	2,49	2,49	2,49	2,49	2,46	2,46	2,46	2,46	2,46	2,46	2.46
<i>N</i> , цикл.	56300	69800	73600	76600	80600	104800	111500	110500	183000	184700	275700	304000	318600	335600	484100	692100	743600	785500	842000	1121700
σ, MIIa				330							310						290			
N₀ 06p.	Ι	2	ŝ	4	5	9	7	8	9	0I	11	12	13	I4	15	16	I_7	18	61	20

60

ВІСНИК ОДЕСЬКОГО НАЦІОНАЛЬНОГО МОРСЬКОГО УНІВЕРСИТЕТУ № 2 (73), 2024

HERALD OF THE ODESA NATIONAL MARITIME UNIVERSITY № 2 (73), 2024

$lgN_{G\Pi}$								(3)	70,02							
lgN_{GC}								6 50	<i>ע</i> С,0							
C_W								00 1	44.1							
m_W								LY 1	1, 4/							
C_{II}									9,17							
K								50.07	10,00							
C_c								010	<i>2</i> 4,0							
m_c	7,96															
lg N	4,94	5,04	5,05	5, 10	5,30	5,37	5,62	5,87	5,56	5,67	5,78	5,82	5,97	6, 14	6,32	6,35
lg σ	2,38	2,38	2,38	2,38	2,34	2,34	2,34	2,34	2,30	2,30	2,30	2,30	2,22	2,22	2,22	2,22
<i>N</i> , цикл.	86100	109500	111700	125700	199400	233200	419800	735400	360200	469000	604800	653400	926300	1368100	2100000	2236200
σ, MIIa		JEN	007				C77				200			311	C/1	
Ne oбp.	Ι	2	ŝ	<i>†</i>	5	9	7	8	9	0I	II	12	13	t1	15	91

ВІСНИК ОДЕСЬКОГО НАЦІОНАЛЬНОГО МОРСЬКОГО УНІВЕРСИТЕТУ № 2 (73), 2024

HERALD OF THE ODESA NATIONAL MARITIME UNIVERSITY № 2 (73), 2024

ВІСНИК ОДЕСЬКОГО НАЦІОНАЛЬНОГО МОРСЬКОГО УНІВЕРСИТЕТУ № 2 (73), 2024

HERALD OF THE ODESA NATIONAL MARITIME UNIVERSITY № 2 (73), 2024

Таблиця 10 Результати випробувань зразків (сталь 40Х, σ_R =154 МПа, зразки III типу, з кільцевою виточкою радіусом R =1,0 мм) та параметри рівнянь (1), (5), (9)

lgN_{GII}	6,05															
lgN_{GC}	6,12															
C_W	7,48															
^{M}m		1,38														
Ш	8,70															
K	59,22															
C_c	23,07															
m_c	7,72															
lg N	4,85	4,93	4,95	4,98	5,16	5, 18	5,23	5,32	5,41	5,56	5,66	5,86	5,67	5,73	5,88	5,90
lg σ	2,36	2,36	2,36	2,36	2,30	2,30	2,30	2,30	2,26	2,26	2,26	2,26	2,23	2,23	2,23	2,23
<i>N</i> , цикл.	70800	84700	89600	94600	145100	152400	169700	207700	260000	360000	459500	720000	467000	542600	750000	800000
<i>σ</i> , ΜΠa	230				200				184				170			
Ne obp.	Ι	2	3	4	5	9	2	8	6	10	11	12	13	14	15	16

За розрахунковими даними таблиць (5)-(10) будуємо графіки залежностей $\lg N_{GC}(\sigma_R)$, $\lg N_{GII}(\sigma_R)$ і $C_W(\sigma_R)$ (рис. 5-7). При побудові цих графіків було відкинуто поодинокі результати, які різко відрізняються від інших експерименттальних даних. При цьому коефіцієнти кореляції дорівнювали 0,51; 0,62; 0,88 (середній та сильний зв'язок між досліджуваними величинами).

Рис. 5. Графік залежності $\lg N_{GC}(\sigma_R)$, побудований за даними табл. 5 -10

Аналізуючи графіки, зауважимо, що вони мають суперечливий характер, проте ці протиріччя можна пояснити, розглядаючи процес побудови кривих втоми, що відповідають рівнянням (1), (5) і (9).

Рис. 6. Графік залежності $\lg N_{{}_{G\!I\!I}}(\sigma_{{}_{R}})$, побудований за даними табл. 5 -10

Рис. 7. Графік залежності $C_w(\sigma_R)$, побудований за даними табл. 5-10

Як відомо, при експериментальній побудові цих кривих точка перелому виходить у результаті екстраполяції її похилої ділянки до перетину горизонтальною ділянкою. Очевидно, що положення горизонтальної ділянки залежить від моделі кривої втоми. У той же час, положення похилої ділянки для кожної моделі буде різним, отже, положення точки перелому кривої втоми теж буде змінюватися. Причому, як видно з цих графіків, для тих самих експериментальних даних вони відрізняються не тільки кількісно, а й якісно (у перших двох випадках залежності lg $N_{GC}(\sigma_R)$, lg $N_{GH}(\sigma_R)$ носять спадаючий характер, а в третьому випадку залежність $C_W(\sigma_R)$ зростаюча).

Висновки

1. Аналіз літературних джерел показує, що призначення бази під час проведення випробувань на опір втомі залежить від характеристик міцності матеріалів. Її вибір ґрунтується на аналізі положення точки перелому кривої втоми, яка може бути виражена різними залежностями.

2. Розрахунок, проведений за допомогою кореляційних взаємозв'язків параметрів кривої втоми з границею витривалості показав, що залежності $\lg N_{GC}(\sigma_R)$, $\lg N_{G\Pi}(\sigma_R)$ і $C_W(\sigma_R)$ можуть бути як спадаючими, так і зростаючими. На характер поведінки впливає вибір моделі кривої втоми.

СПИСОК ЛІТЕРАТУРИ

- 1. PG Forrest Fatigue of Metals. Pergamon press. Oxford, London, New York, Paris. 1962. 352 p.
- 2. Олійник М.В. Витривалість деталей машин. К.: Техніка, 1979. 200 с.
 - 64

- 3. Конопльов А.В. Експериментально-розрахункові методи визначення границі витривалості деталей машин. Створення їхньої єдиної класифікації // Автореферат дис. докт. техн. наук. Одеса.: 2013. 39 с.
- Конопльов А.В., Селюкова Е.В. Визначення границі витривалості деталей машин методом Про з урахуванням взаємозв'язку між його параметрами // Деталі машин: Респ. міжвід. наук.-техн. зб. 1988. Вип. 40. С. 102-104.
- 5. Олійник М.В., Конопльов А.В., Кібаков О.Г. Методи прискореного визначення характеристик опору втоми у практичних додатках. Одеса: Астропринт, 2000. 138 с.

REFERENCES

- 1. Forrest P.G. Fatigue of Metals. Pergamon Press. Oxford, London, New York, Paris. 1962. 352 p.
- 2. Oleinik M.V. Vytrivalist detalei mashyn. [Endurance of machine parts] K.: Tekhnika (Technique), 1979. 200 p.
- 3. Konoplev O.V. Eksperymentalno-rozrakhunkovi metody vyznachennia hranitsi vytrivalosti detalei mashyn. Stvorennia yikhnoyi yedynoyi klasyfikatsii [Experimental-computational methods for determining the endurance limit of machine parts. Creation of their unified classification] // Avtoreferat dys. dokt. tekhn. nauk. (Abstract of thesis. doc. tech. sciences) Odesa.: 2013. 39 p.
- 4. Konoplev A.V., Seliukova E.V. Vyznachennia hranitsi vytrivalosti detalei mashyn metodom Pro z urakhuvanniam vzaiemozv'iazku mizh yoho parametramy [Determination of the endurance limit of machine parts by the Pro method taking into account the interrelation between its parameters] // Detali mashyn (Machine parts): Resp. mizhvid. nauk.-tekhn. zb. 1988. Rel. 40. P. 102-104.
- 5. Oleinik M.V., Konoplev A.V., Kibakov A.H. Metody pryskorenogo vyznachennia kharakterystyk oporu vtomu u praktychnykh dodatkakh. [Methods of accelerated determination of fatigue resistance characteristics in practical applications] Odesa: Astroprint, 2000. 138 p.

Стаття надійшла до редакції 10.06.2024

Посилання на статтю: Конопльов А.В., Кононова О.М., Чередарчук Н.І., Галевський В.В., Кокошко Є.М. Про вибір бази випробувань матеріалів та деталей на опір втомі // Вісник Одеського національного морського університету: Зб. наук. праць, 2024. № 2 (73). С. 48-65. DOI 10.47049/2226-1893-2024-2-48-65.

Article received 10.06.2024

Reference a journal artic: Konoplev A., Kononova O., Cheredarchuk N., Halevskyi V., Kokoshko Y. On the choice of the testing base for materials and components for fatigue resistance // *Herald of the Odesa national maritime university:* Coll. scient. works, 2024. N_{2} 2 (73). P. 48-65. DOI 10.47049/2226-1893-2024-2-48-65.